Sunday, August 30, 2009

Challenges to Isolation and Purification of Proteins


Isolation generally denotes the separation of the product from the bulk of the producing organism. The disposition and state of the expressed protein affect the isolation procedure. For mammalian cells and some E. coli, Streptomyces, Bacillus, and yeast products, the protein is released from the cell into the surrounding medium, and isolation is effected by a solid-liquid separation step, usually centrifugation or microfiltration or ultrafiltration. If the product has aggregated either in the cytoplasmic or periplasmic space, isolation is more involved. Generally, the cell is first lysed by mechanical, chemical, or enzymatic treatment (or a combination). In some cases, the more dense aggregate can be separated by centrifugation from most of the soluble and insoluble cell components; in other cases, the aggregate is first solubilized while still in the soluble protein mixture.

Purification of the protein is a critical and often expensive part of the process. It might account for 50% or more of the total production cost. Purification has several objectives: to remove contaminating components from the host organism, i.e., other proteins, DNA, and lipids; to separate the desired protein (or family of proteins) from undesired variants of the desired protein; to remove and avoid the introduction of endotoxin; to inactivate viruses; to obtain required yields at acceptable cost; to avoid chemical or biochemical modification of the protein; and to make the process consistent and reliable. In some cases, the first and additional objective is to fold the protein into its desired conformation.

The most common individual operations are centrifugation, filtration, membrane separation, adsorption separation, and chromatography.

The difficulty of separation can often be decreased by changing the organism or culture conditions to produce a more uniform protein. However, it is still necessary to combine a series of purification steps each of which separates according to a different principle. Ultrafiltration steps are often used between separation steps to concentrate the protein solution or to make the buffer solution compatible with the next separation step. The final steps are designed to place the purified protein in the solution used for the product form.

The complexity of the individual purification steps and the need to be able to integrate them into a manufacturing system translate into a major opportunity for bio-processing engineering as the process moves from the bench to the plant. Research and development in purification, scaleup integration, and system design will continue to have high priority.

Tags: Bio Technology, Bio Genetics, Bio Process Engineering

Related Posts by Categories




0 comments: