One of the challenges for vectors is to survive the patient's immune system so they can transfer the corrective genes from their genome into the patient's cells. In general, the immune system of the human body contains molecules that immobilize viruses or other microorganisms that could infect the organism. Viruses that escape the immune system need to penetrate the cellular membrane, an additional barrier to infection. Finally, the infecting retrovirus must integrate its genome with that of the host, thereby moving the corrective genes into the genome of the infected cell. This integration happens in a random manner. It should occur in an area of DNA that is not essential to the host genome, or a risk of other complications might occur. Furthermore, the introduced gene must be transcribed and expressed for the production of the correct enzyme. With all these processes at the molecular level, gene therapy becomes a very complex procedure.
Another promising strategy, which has been used for the introduction of therapeutic genes in lung cancer treatment, is the direct injection of the corrective genes into the target area. Using this strategy, scientists have injected a drug containing the normal version of the gene, which suppresses cell tumor growth, directly into the patient's cancerous tumor. This technique bypasses the immune system reaction to the invading vector, a problem frequently associated with gene therapy. Many scientists believe that as gene therapy develops, it will be possible in the near future to easily introduce genes into patients through intramuscular injection, especially for cases of anemia, hemophilia, diabetes, and other diseases related to the circulatory system.
Tags: Bio Technology, Bio Genetics, Gene Therapy
1 comments:
nice blog and have a lots of stuff here.....
http://bollywoodsprings.blogspot.com
Post a Comment