Friday, May 8, 2009

Understanding Stem Cell Gene Therapy


Stem cell therapy or therapeutic cloning does not involve gene therapy itself. However, in the future it might be used in conjunction with gene therapy for regeneration of tissue and organs after they have been treated with corrective genes. Visually, stem cells are not distinguishable from any other cells of the human body. Under a common microscope (magnification 20 to 40 times), those cells can only be observed using special dyes. Visually there is no significant difference in such cells. The real differences exist at the DNA level, where gene expression is amendable to signals influencing protein expression. The cells can differentiate into any of the 220 cell types of the human body (e.g., kidneys, heart, liver, skin, or retina), a phenomenon called pluripotency. At birth, stem cells can be harvested from an individual's bone marrow, fat tissue, and the umbilical cord. Embryonic stem cells are harvested from embryos up to a few days after fertilization.

Another characteristic of stem cells is their capability to grow indefinitely. Whereas the remaining body cells have a biological programming that limits the number of cell divisions they can go through before dying, stem cells can be maintained indefinitely in a petri dish with nutritive media.

Stem cell therapy provides hope for a cure for patients of incurable afflictions such as Parkinson's disease and Alzheimer's disease, and also for people suffering from paralysis resulting from spinal cord injuries.

At first, some opponents speculated that stem cells would be used in nurseries to produce organs such as livers, hearts, and virtually any other body part. However, most organs possess complex structures with ducts and valves, making it impossible to produce them outside of the organism. Stem cells have opened a new avenue for disease treatment. For example, the injection of stem cells into the liver of a patient with cirrhosis or hepatitis could result in new tissue capable of performing its role. Stem cell therapy also has great potential to cure rheumatoid arthritis and some heart diseases. Recent research has found that spine-injured mice suffering from paralysis were able to move their legs following an injection of stem cells.

Some people believe that if human stem cells are as versatile as those of mice, they might be the long sought after fountain of youth. The combination of stem cells with gene therapy might allow rebuilding of new body parts to substitute for old and defective ones. Right now, different procedures are being tested for curing ADA deficiency. Somatic cell gene therapies have the limitation of lasting for only a few months, which in turn requires repeated applications. With the use of stem cells to regenerate healthy bone marrow cells, a permanent cure is expected, as healthy cells have the capability to grow and divide continuously.

Embryonic stem cells, from embryos about four days old, have been at the center of a heated debate due to ethical issues. The main disagreement is whether or not a four-day-old embryo is already a human life. When would an embryo or a fetus reach the status of life? Those that support the use of embryonic stem cells would argue that human life would not begin until about the 14th day after the fertilization, whereas the opposition argues that life begins at conception (i.e., at the moment of the fertilization of the egg by the sperm). For many, the destruction of embryos for the purpose of treating another human being is wrong. Recently, in the United States, the Bush administration broadened the definition of a child eligible for coverage under the Children's Health Insurance Program by classifying a developing fetus as an "unborn child." Many activists are arguing that the Bush administration's proposal demonstrates its commitment to the strategy of undermining a woman's right to choose abortion by ascribing legal rights to embryos.

Tags: Bio Technology, Bio Genetics, Gene Therapy

Related Posts by Categories




1 comments:

L. Venkata Subramaniam on May 17, 2009 at 10:28 PM said...

I think stem cells will revolutionize healthcare. Today the elderly live longer but they are just barely kept alive by medicine and surgery that leave them weak and helpless. I think stem cells will result in longer life with better quality of life.